من رفتم سربازی اگر محتوای منو دوست داشتید و بدردتون خورد از من حمایت مالی کنید

رگرسیون خطی چیست؟

رگرسیون خطی چیست؟
رگرسیون خطی چیست؟

رگریسون خطی چیست؟

در آمار، رگرسیون خطی یک روریکرد مدل خطی بین متغیر پاسخ (Response) با یک یا چند متغیر توصیفی (Explanatory) است. اغلب برای کشف مدل رابطه‌ی خطی بین متغیرها از رگرسیون (Regression) استفاده می‌شود.

 

رگرسیون خطی چیست؟

در این حالت فرض بر این است که یک یا چند متغیر توصیفی که مقدار آن‌ها مستقل از بقیه متغیرها یا تحت کنترل محقق است، می‌تواند در پیش‌بینی متغیر پاسخ که مقدارش وابسته به متغیرهای توصیفی و تحت کنترل محقق نیست، موثر است. هدف از انجام تحلیل رگرسیون شناسایی مدل خطی این رابطه‌ است.

 

ضریب همبستگی رگرسیون خطی چیست؟

برای سنجش شدت رابطه بین متغیر وابسته و مستقل می‌توان از ضریب همبستگی استفاده کرد. هر چه ضریب همبستگی به ۱ یا ۱- نزدیکتر شود،‌ شدت رابطه خطی بین متغیرهای مستقل و وابسته شدیدتر است. البته اگر ضریب همبستگی نزدیک به ۱ شود جهت تغییرات هر دو متغیر یکسان است که به آن رابطه مستقیم می‌گوییم و اگر ضریب همبستگی به ۱- نزدیک شود، جهت تغییرات متغیرها معکوس یکدیگر خواهد بود و به آن رابطه عکس می‌گوییم. ولی در هر دو حالت امکان پیش‌بینی مقدار متغیر وابسته برحسب متغیر مستقل وجود دارد. هرچند ضریب همبستگی راهی برای نشان دادن رابطه بین دو متغیر مستقل و وابسته است ولی مدل رابطه بین این دو متغیر را نشان نمی‌دهد. با رگرسیون می‌توان قانونی که بین داده‌ها وجود دارد را کشف و به کار بست. بسیاری از رابطه‌های فیزیک یا شیمی به کمک رگرسیون بدست آمده است. برای مثال مقدار ثابت گازها در فیزیک کلاسیک از طریق رگرسیون قابل محاسبه است. نمایش رابطه‌ی خطی بین دو متغیر مستقل و وابسته معمولا توسط «نمودار نقطه‌ای» (Scatter Plot) انجام می‌شود.

نمودار رگرسیون خطی

 

رابطه مستقیم بین متغییر وابسته با خط رگریسون

با توجه به تصویر بالا مشخص است که محور افقی مقدارهای متغیر مستقل و محور عمودی مقدارهای متغیر وابسته را نشان می‌دهد و رابطه‌ی بین دو متغیر مستقیم است. ولی در تصویر زیر رابطه شدید ولی در جهت عکس بین دو متغیر مستفل و وابسته دیده می‌شود.

رگرسیون خطی

رابطه‌ی معکوس بین متغییر مستقل وابسته با خط رگریسون است.

 

در ارتباط با شاخه‌های مختلف هوش مصنوعی در این لینک بیش‌تر بخوانید.

برای امتیاز به این نوشته کلیک کنید!
[کل: 0 میانگین: 0]